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A MODIFIED PRONY METHOD APPROACH TO ECHO-REDUCTION

MEASUREMENTS OF TIME-LIMITED TRANSIENT SIGNALS

INTRODUCTION

The current procedure for making echo-reduction measurements of
acoustic panels at the Underwater Sound Reference Detachment of the Naval
Research Laboratory employs steady-state signal processing of measurements
made in the anechoic tank. The anechoic tank allows measurements to be
performed at various temperatures and hydrostatic pressures. However, it
restricts panel width to 76.2 cm due to the size of the access port.

-34 cm--

PROBE PROJECTOR

170 cM

ANJECHOIC PANEL
76 cm

Fig. 1 - Panel measurement geometry

Figure 1 illustrates the geometry of the measurements. The panel is
insonified by a projector 170 cm in front of the panel, and the incident
and reflected signals are monitored by a probe 34 cm in front of the panel.
For a step sinusoid signal from the projector, the output of the probe,
illustrated in Fig. 2, consists of 426-ps segment of incident signal
followed by a 141-Us segment of both incident and reflected signals
followed by the arrival of the diffracted signal from the panel edges.
In order to eliminate the undesired diffracted signal, the measurements
are time limited to approximately 140-ps for the reflected signal. This
time limit and the constraint that the signal reach its steady-state re-
sponse currently restrict measurements to frequencies above 15 kHz. To
obtain measurements below 15 kHz it must be possible to extrapolate the
steady-state response from the transient portion of the signal.

Manuscript submitted March 30, 1980.



INCIDENT INCIDENT + INCIDENT +
REFLECTED REFLECTED +

DIFFRACTED

Fig. 2 - Time segment output of probe for step sinusoid signal

The Prony [11 method first published in 1795 allows such an extra-
polation and has been investigated as a means of allowing low-frequency
panel measurements. In this report a modified Prony method is presented,
which allows measurements to be performed down to 2 kHz, along with the
results of measurements on various panels to illustrate the ability of
the modified approach.

THEORY

Any signal that can be represented by a function that is the solution
of a set of constant-coefficient linear differential equations has an ex-
pansion given by [2]

N
St = A, exp(. ,()

where N is the order of expansion and Aj and 6j are respectively the
amplitudes and poles to be determined. Since t) is real, both Aj and
Aj must be real or appear in complex conjugate pairs. The real part of
the pole A is the time constant associated with the transient response,
and the imaginary part is the angular frequency of the jth component.
The phase information is contained in the amplitudes Aj.

There are two immediate difficulties in obtaining the expansion in
Eq. (1). First there is the problem of the nonlinearity of the expan-
sion in V6 and second, there is the indeterminacy of the order of ex-
pansionN . The first problem was solved by Prony and his method will
be described below. The indeterminacy of the order of expansion will
be discussed after the basic equations have been derived.

Prony found that the desired expansion could be obtained by consid-
ering a uniformly sampled version of 6(t). Equation (1) then becomes

N
S(Elk =l A, exp(jk&) (2)

where a is the data sampling time interval and k is an indexing integer
running from 0 to Af such that MA is equal to the observation time.
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Let z= expf . ). (3)

Then 6(kA) = Az k (4)

Equation (4) does not represent a linear set of equations in zj. However,
Prony noted that solutions to z could be found by first defining an Nth
order polynomial in z whose roots are Zj. That is

N N
P(z) = I a-i' n (z-z, ()

where aN = 1. The ai coefficients have one more degree of freedom than
the Zj; hence the arbitrary setting of aN equal to unity. Using Eqs. (4)
and (5) to evaluate the following expression:

.} jf (i, + t)A. (6)

For t - 0 to M-N yields

N N ( N Aj z
cZ [(+ £)A] zo( A]l

N (

N A z P(z 1 =.

N-l
Or . (i [(i+ Z)A] = -6[(N + Z)A] (7)

since aN = 1. Equation (7) yields M-N+l linear equations in the N unknown
polynomial coefficients. For M=2N-l the equations can be solved to obtain
the ai which completely define the polynomial in Eq. (5). The roots of the
polynomial can be found to provide the required Z1 . These z are then sub-
stituted into Eq. (4) to determine the amplitudes Aj. The expansion is
then completed by transforming the zj back into the complex 4 plane using

S lIn z. (8)

Prony's method isolates the nonlinearity of the expansion to Eq. (5).
However, the method introduces a third difficulty through Eq. (8).
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Negative real Zj cannot be transformed back into the complex A plane.
Although these represent nonphysical terms, noise contaminated data will
occasionally produce negative real Zj. When this occurs, one must be
satisfied with the expansion in the form of Eq. (4).

In addition to negative real Zj, nonphysical roots occur as a conse-
quence of the indeterminacy of the order of expansion. If fewer poles are
specified in the expansion than actually exist in the data, then the poles
returned by the algorithm deviate from the true poles and, in most cases,
the true poles will not be returned at all. If more poles are specified
than actually exist, the algorithm will return extraneous poles in addi-
tion to a set that deviates from the true poles. The presence of the
extraneous poles adversely affects the calculated amplitudes of the true
poles. Attempts to systematically determine the order of expansion by
checking for linear dependent columns in the matrix generated by the
Prony difference equations or by analyzing the eigenvalues of the matrix
have failed in the presence of noise [3].

In the modified method to be developed in the remainder of this section,
the problems of negative real zj and the indeterminacy of the order of ex-
pansion will be circumvented. This will be accomplished through the intro-
duction of apriori poles and will be discussed after the equations are
developed. However, first a modified least square extension of the Prony
method will be developed.

The solution of Eq. (7) requires at least 2N sampled data points. For
the case where M = 2N-1, the solution will pass directly through the sampled
data points since the problem is exactly specified. However, in general,
the number of available data points exceeds 2N and a type of least square
solution is used. This is most conveniently done by performing a pseudo-
inverse of Eqs. (7) and (4). Equation (7) in matrix notation is

Ax y, (9)

where

40 6 62 . . . * 6N-1

61 6 3 .... 6

Az 62 . N+

6M-N 6M-N+l 6M-N+2 6M-i

U 4
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cN

6N1

SM

The pseudo-inverse is formed by premultipjlying both sides of Eq. (9) by
the transpose of A. That is,

ATAxc = ATy. (-10)

The matrix A TA is a symmetric Nx'N matrix. Writing out Eq. (10) explicitly
yields

N-1 (M

M

for t 0 to N-1.
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Following the same procedure the least square extension of Eq. (4) is

N M k) M kAJ~ (Z Z.J k. z6(kA) (12)

for i = 1 to N.

This least square extension of the Prony method was examined by
McDonough [4], who observed that the normal equations become increasingly
ill conditioned as the sampling rate increases. The source of the diffi-
culty lies in the data interval spanned by each difference equation. The
inter-al spanned is NA; and as the sampling rate I/A increases, the spanned
interval decreases. As smaller portions of the signal are used in each
difference equation, the noise in the signal has a greater deleterious
effect on the pole estimates. In order to eliminate this effect Beatty
[5] uses every pth sampled data point instead of adjacent samples to
satisfy the difference equations. This results in a data span of NpA
for each difference equation. Then, as the sampling rate is increased,
the value of p is increased to maximize the interval spanned. All of the
data are used since each difference equation's initial data sample is
f(IA) where k is an incrementally stepped integer. For this modification
the equations are developed below.

Let
N
-_A + npA) A exp[tkMA + npA)], (13)

where k, n,and p are all positive integers and p is the introduced data
increment. Let

z.= exp(s 1 pA) (14)

and

6(k,n) = 6(kA + npA). (15)

Then Eq. (13) becomes

N N
1(k,n) i Ai exp k)l _ -j .. (16)

where Bj- A. exp( jkA). Since the difference equations do not depend
upon 8] (k is a constant in each difference equation), the difference
equations are

N-1
I 6(k,n)an = -6(k,N) (17)
n-o
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for k = 0 to M-N. The least square extension of Eq. (17) is obtained by
forming the pseudo-inverse resulting in

N-1 GM-N M-N
a I f(kn)j(k,1) -k flk,N)f(k,t) (18)
n =0  k=o

for Z = 0 to N-1. The solution of Eq. (18) yields the coefficients an
which define P(z'). The roots of P(z-) are Z The zJ may be transformed
back into the complex A plane using

- (pA)- 1 in z,% (19)

Once the Aj are computed they may be substituted into Eq. (3), and then
Eq. (12) can be used to obtain the amplitudes A-r. As before, the pro-
cedure fails if a negative real Z is obtained; except in this case not
even the amplitudes can be obtained.

In the case of echo-reduction measurements the useful information is
contained in the amplitude of the steady-state driving frequency component.
Under this circumstance the Prony method can be modified by the introduc-
tion of a priori poles to circumvent the problems of negative real zi" and
the indeterminacy of the order of expansion. If the algorithm is con-
strained to find the correct a priori poles, the remaining poles used in
the expansion are used as curve-fitting poles. There is no requirement
that the curve-fitting poles have any physical significance. Then the
only requirement on the order of expansion is that there be a sufficient
number of curve-fitting poles such that the mean square deviation between
the waveform and it's expansion be below some arbitrary small value.

The problem of negative real z" is eliminated by using an odd integer
for the data increment p. Then Eq. (12) may be used directly to obtain
the amplitudes since

z (Z .) l / .  (20)

and negative real Z' are handled with

1/PZ = -I 1 . (21)

The modified equations are developed below.

Let

R e Rb z' =1 (z'- Z) = N z (22)

:0 1=i



be the polynomial generated by the R apriori poles where bR = 1. Since
N(z ' ) must be a factor of Prony's polynomial, P(z-i in Eq. (5) can be
written as

N-R
n-oP )= N(z') n

n=o

where aN R = 1. Writing Eq. (23) explicitly yields

N R N-Ri aiz--i = I blZ-l .1 nz n

S=O =Oz n=O

Equating similar powers of ZA yields

R
-i = b z ' (25)

where aN = 8N-l . N-R+l = 0 and -l = a-2. = 0.

Substitution of Eq. (25) into Eq. (17) yields

N -i {R
'I 6(k,i) I b t(i-- -fk,N), (26)

which may be rewitten as

A-R-l( R R
i8o Il bf(ki+l) = -I bjf(k,N-R+j). (27)

(=O 'I = j=o

Let

R
F(k, n) =J0 bjf(k,n+j). (28)

j=0 J

Then Eq. (27) becomes

N-R-1

. 8 F(k,i) = -Ffk,N-R). (:9)

Forming the pseudo-inverse results in

N-R-I (M-N ,-

N ~'-1ijk V FU ~)F(f,j) = N ~ FUZ,N-1)F(k,j) (30)
k~o k--o
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for j = 1 to N-R-1. Equation (30) is solved to obtain the coefficients Bi .
These B. are then used to generate the reduced Prony polynomial whose roots
z. are the curve-fitting poles. The curve-fitting poles together with the
a priori poles are transformed using Eqs. (20) and (21). The computed Z
are then used in Eq. (12) to find the amplitudes A1 . The amplitude of tne
steady-state driving frequency pole is then used to compute the echo
reduction in a manner to be discussed later.

COMPARISON OF MODIFICATIONS

In order to test the effectiveness of the various modifications on the
type of signal to be encountered in panel measurements, the waveform in Fig.
3 was generated. The waveform simulates the reflection of a 3-kHz step
sinusoid from a 0.95-cm thick infinite steel plate. It was computer gener-
ated by successively adding, with suitable time delays, the multiple internal
reflections that are transmitted back through the face of the plate. Seven
data files were constructed by sampling the waveform at 1 MHz and adding
various levels of random noise. The first 200 ps of each data file was
then analyzed by the Prony method in six different manners.

0.426

0.341-

0.256-

0.170

o 0.085.

0(

S-0.085

-0.1701

-0O 256-

-0.426
0 0.093 0.186 0.279 0.372 0.465

TIME (ms)

Fig. 3 - Simulated reflection of a 3-kHz step sinusoid
from a 0.95-cm thick infinite steel plate

The six expansions performed were divided into two sets of three, one
of which used three poles in the expansion while the other used fifteen poles.
Three pole expansions were used since the waveform has a known three-pole
expansion consisting of a complex conjugate pair representing the steady-
state driving frequency and a real pole associated with the transient
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response of the plate. The choice of fifteen poles was arbitrary. Each
set contained one expansion with no a priori poles and a data increment of
one one expansion with no apriori poles and a data increment of eleven,
and an expansion with two a priori poles and a data increment of eleven.
The apriori poles entered were the steady-state driving frequency poles
and since 200 data points were used, all expansions used least square
methods.

The amplitude of the steady-state driving frequency poles or the poles
closest to the driving frequency when no apriori information was entered
were used as a measure of the accuracy of the expansion. The results are
plotted in Fig. 4 where the correct amplitude is 0.426 and the two expan-
sions with a data increment of one were not plotted since the expansions
failed in most cases to obtain any poles close to the driving frequency.
The results indicate that unless one has a high signal to noise ratio the
only method that obtains useful information is the use of both apriori and
curve fitting poles. In general the more a priori information supplied and
the more curve fitting poles used the better the results.

0.8

0.7

0.6-

0.3-

1- I5 POLES. 2 A PRIORI

3 POLES , 2 A PRIORI
I 1$5 POLES, 0 A PRIORI

0.2/- 3 POLES, 0 A PRIORI

0.1-

!
01 . I

to 20 30 40 50 60 70
SIGNAL TO NOISE RATIO (1B9

Fig. 4 - Amplitudes of 3-kHz component of simulated panel reflection
obtained by Prony algorithm with various modifications
and noise levels. Correct amplitude is 0.426.
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SELECTION OF INPUT VARIABLES

The modified Prony algorithm contains three user supplied variables:
the data increment, order of expansion, and length of time window.
Unfortunately, no strict limits on the variables can be set since they
depend on the complexity of the waveform being analyzed and the signal-
to-noise ratio. However, given the constraints under which the method
will be used in making echo-reduction measurements, several useful comments
can be made. In this section the required values of the variables for
echo-reduction measurements will be investigated.

Data Increment

In order to investigate the variables with the actual signals to be
encountered in panel measurements, a set of waveforms was obtained for
the reflection of a step sinusoid from a 1.27-cm-thick, 76-cm-square
steel panel. The waveforms were obtained by placing a probe 5 cm and a
projector 170 cm in front of the steel panel. A 1-ms pulse from the
projector produced a 67-ps segment of direct signal, at the probe,
followed by 250 ps of incident plus reflected signals before the arrival
of the diffracted signal from the panel edges. The output voltage of
the probe was sampled at 1 MHz, and 100 separate recordings were averaged
to reduce the incoherent noise level. A second set of measurements were
made without the steel panel in place to obtain a long recording of the
incident signal. The two waveforms were then directly subtracted to
yield the reflected waveform from the steel plate. Figure (5) illustrates
the waveform of the steel panel reflection at 3 kHz.

.275

.220

Z .165

'" .110 -

' .035

0

,, -055-

- -.110
.J
0. -. 165

-.220 -

-.275 I I
0 125 250 375 500 625

TIME (vis)

* Fig. 5 - Waveform obtained by the reflection of a 3-kHz
step sinusoid from a 1.27-cm-thick steel plate

. ... .. . . . ... ... .... .... . ... .. . . i i,1 1



The modified Prony method was used to analyze the 3-kHz waveform to
obtain the amplitude of the steady-state driving frequency poles that
were entered a priori. A 15-pole expansion was used, and the time window
was reduced in 10-ps steps from 250 to 110 us. Four different data in-
crements were used, and the results are illustrated in Fig. (6). Values
for the three largest data increments do not span the entire time scale.
This is due to the requirement of a minimum numnber of data points for the
expansion as determined by the order of expansion and the data increment.
The minimum number of data points required by the algorithm is given by

Min. # pts. = (Data Increment +1) *Order of Expansion. (31)

With a 15-pole expansion the minimum number of data points for a data
increment of 11 is 180. Since the waveform was sampled at 1 MHz, the
minimum time window for a data increment of 11 is 180 Us.

0.25

0.24-

t 0.23 
.

I 0.22 -
rI .

0.21-
o 1

DATA INCREMENT
-J 0.20 II

7
5 Rt

0.19

0.181 I I 1 I I I I I I I
250 240 230 220 210 200 190 180 170 160 ISO 140 130 120 110

TIME WINDOW (ps)

Fig. 6 - Amplitude of the steady-state driving
frequency poles for waveform in Fig. (5)
obtained with 15-pole expansions and
various data increments

The results in Fig. (6) are consistent for large time windows but vary
as the time window is reduced. Since in general the largest possible data
increment should be used, the appropriate portions of Fig. (6) have been
reproduced in Fig. (7).
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0.25

0.24

Z 0.23 \

- %" 
%S0.22-N

J 0.21-

I- DATA INCREMENTj

0 0.20 - II
---- 9

0.19

0.18 I I I I I I I _ I
250 240 230 220 210 200 190 180 ITo 160 150 140 130 120 110

TIME WINDOW (us)

Fig. (7) - Segments of data in Fig. (6) illustrating

effect of minimum time window

Figure (7) illustrates the one exception to the largest possible data
increment rule. The values at 180 Vs for a data increment of 11 and at
150 ps for a data increment of 9 show marked deviations from the average
value. Both of these cases correspond to minimum values for the time
window of the associated data increment. The difficulty lies in the matrix
generated from the Prony difference equations. If no a priori poles are
used, the minimum number of points in Eq. (31) generates an nxn matrix
where n is the order of expansion. Since this is a square matrix, no least-
square technique is required to solve the equations. However, if a priori
poles are used, the matrix generated is an (n-.'t xn matrix where ) is the
number of a priori poles used in the expansion. The matrix represents an
overdetermined set of equations for n-r unknown coefficients, and a least-
square technique must be used to solve the equations. When % is small in
comparison to n or when the matrix is nearly a square matrix, the least-
square technique introduces considerable error into the calculation. All
of the measurements in Figs. (6) and (7) were done with an order of
expansion of 15 and with two a priori poles. By reducing the value of
the data increment when the minimum time window is approached, the matrix
is no longer nearly a square matrix, and the least-square technique returns
consistent values as illustrated in Fig. (7). Thus the largest data
increment should be used except when the minimum time window is approached,
and then the next lower value should be used.

Figure (7) also indicates that for time windows of less than 150 ps
an insufficient portion of the waveform is being used to yield useful
res ilts.
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Order of Expansion

The order of expansion is the most difficult variable to determine.
There must be a least as many poles in the expansion as there are in
the signal. However, a knowledge of the structure of the signal does
not guarantee correct results. As illustrated in Fig. (4) a 3-pole
expansion with two poles entered a priori was sufficient for a waveform
that was known to have only three poles when the signal-to-noise ratio
was 50 dB. When the signal-to-noise ratio was lowered, the 3-pole ex-
pansion yielded incorrect results.

In general the more poles used in the expansion together with the
a priori poles, the better the results. Unfortunately the larger the
order of expansion, the longer the running time for the program. The
optimum value is strongly dependent on the complexity of the waveform,
the signal-to-noise ratio, and the length of the time window. To get
some idea of the required order of expansion for echo-reduction
measurements, the waveform in Fig. (5) was again analyzed. Five differ-
ent orders of expansion were used on time windows that varied from 250
to 150 Ps. The data increment was determined by the results of the
previous section.

In Fig. (8) the amplitude of the steady-state driving frequency pole,
which was entered a priori, has been plotted against the length of the
tire window. The 15-pole expansion deviates by less than 0.1 dB over
the entire time window span. The 12-pole expansion is consistent down
to a time window of 180 ps. However, the remaining expansions yield
inconsistent results and vary from one time window to the next. This
indicates that the order of expansion must be at least 15 for echo-
reduction measurements of simple homogeneous plates and may have to be
higher for nonhomogeneous plates.

2L

D

023

0'22- 1 5 POLE Exr.A,,:C!J
12 POLE EXPVSO'4
9 POLE EXPANS ON

6 ;OLE EXPANSION
4 POLE ExF'ASIOU'N

02L i I I I l I I -

2:0 40 230 2 0 200 190 80 170 60 !0
TIME wjJCCW (ps)

Fig. (8) - Amplitude of the steady-state driving frequency poles for wave.-
form in Fig. (5) obtained with various orders of expansion

14



Time Window

The minimum time window necessary for the algorithm to yield useful
results is dependent on the acceptable error and the signal-to-noise
ratio. Since the signal-to-noise ratio is a function of the reflection
coefficient of the panel the error associated with a particular time
window will vary from one panel to another. In order to obtain some idea
of the minimum time window, the steel panel described earlier was
investigated.

Three waveforms were obtained for the reflection of a step sinusoid
from the steel panel at frequencies of 2, 2.5, and 3 kHz. The signal-
to-noise ratio in each was approximately 40 dB. Each waveform was
analyzed with a 15-pole expansion that included two steady-state driving
frequency poles entered a priori. The time window was varied from 250
to 130 Vs in 10-ps steps.

0.20

0.26

0.24 - 3 kHz

0.22
I-

Z

>- 0.20

t.- 2.5 kHz

~4
0.10

0.1-

• TIME WINDC',' (iS)

. ~ Fig. (9) - Amplitude of the steady-st.ate driving
i ' frequency poles as a function of time window

2 k15
mC



In Fig. (9) the amplitude of the driving frequency pole has been
plotted against the length of the time window for each of the waveforms.
Since the actual amplitudes are unknown, the average values of the flat
portions of the curves were used as the correct amplitudes. Arbitrarily
choosing an allowable error of 0.25 dB from the average value as a measure
of the accuracy of the algorithm produced minimum time windows of 140 us
for the 3-kHz waveform, 170 us for the 2.5-kHz waveform, and 230 us for
the 2-kHz waveform. These time windows correspond to 0.42, 0.425, and
0.46 wavelengths, respectively, for 2.5 and 2 kHz. Since these values
are in good agreement, a general rule of approximately half a wavelength
as the minimum time window has been used for the data obtained in this
report.

EXPERIMENTAL PROCEDURE

There are two procedures for analyzing echo-reduction measurements
with the modified Prony method. In the first, referred to as the two-
window method, the projector is positioned 170 cm and the probe 15 cm
in front of the panel. A USRD type F36 standard transducer is used as
the projector while the probe is a USRD type H52 standard hydrophone.
The projector is driven by a step sinusoidal signal of 1-ms duration
that produces a 200-ps segment of incident signal, at the probe,
followed by 200 us of incident plus reflected signal before the arrival
of the diffracted signal from the panel edges. This allows equal periods
of the incident and reflected signals to be observed.

The waveform at the probe is sampled at 1 MHz, and approximately
50 to 100 waveforms are averaged to reduce the incoherent noise level.
The waveform is then divided into two time windows--one containing
only the incident signal, and the second containing the incident plus
reflected portions of the signal. Figure (10) illustrates the waveform
and the two time windows used in analyzing the waveform. Both time
windows are analyzed by the modified Prony method to find the amplitudes
of the steady-state driving frequency poles. A 15-pole expansion is used
with three poles entered a priori. Two of the a priori poles are the
complex conjugate pair representing the driving frequency, and the third
a priori pole is a real pole associated with a high-pass RC filter on the
input side.
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Fig. (10) - Illustration of two-window method. Two
time windows are obtained from the waveform;
the first colcaining only the incident signal
and the second containing the incident plus
reflected signal.

The complex amplitude of the incident portion is then phase shifted
by an amount equal to the time separation of the two time windows and
substracted from the complex amplitude of the incident plus reflected
portion. This yields the complex amplitude of the steady-state driving
frequency pole for the reflected signal. The echo reduction is then
calculated as

Echo reduction = 20 log I/A , (35)

where A, and Ar are respectively the moduli of the amplitudes of the
incident and reflected signals.

While the two-window method yields good results, it is not as
accurate as the second method, to be discussed below, owing to phase
errors. The algorithm does a much better job of finding the correct
modulus of the amplitude than it does in finding the correct phase.
This phase error introduces an error into the echo-reduction calcu-
lation when the incident amplitude is phase shifted and substracted
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from the incident plus reflected amplitude. Not all of the incident
signal is cancelled, and the amplitude obtained does not represent the
reflected signal only. The magnitude of the error will depend on the
phase error and the relative phase of the direct and reflected signals.
If the length of the time window is equivalent to at least one period
of the driving frequency, frequencies above 5 kHz for a 200-p~s time
window, the phase error is negligible and the two-window method is
sufficient. However, as the frequency is reduced, the phase error
increases and an alternate method must be used.

The second method, referred to as the difference method, eliminates
the effect of the phase error in the algorithm by directly subtracting
out the incident signal. This method was basically described in
connection with dataarquisition for the section on the data increment.
It consists of performing two separate measurements--one with and one
without the acoustic panel in position. The two recorded waveforms
are then directly subtracted to yield the reflected signal from the
panel as illustrated in Fig. (11). Then the modified Prony method is
used to analyze the incident and reflected waveforms separately to
obtain the amplitudes of the driving frequency poles.
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Fig. (11) - Sequence illustrating difference method. The
top waveform was obtained with panel in position
while the middle waveform was obtained without the
panel. The lower waveform was obtained by direct
substraction of the width and without panel waveforTis.
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The difference method has the additional advantage of allowing
longer portions of the reflected signal to be observed. In the two-
window method the optimum position of the probe is 15 cm in front of
the panel since this allows equal segments of the incident and reflected
signals to be observed. However, in the difference method the measure-
ment performed without the panel produces the waveform for the incident
signal. This allows the panel to be positioned close to the probe for
the second measurement. With the probe 5 cm from the panel, 250 jis of
reflected signal can be observed prior to the arrival of the diffracted
signal from the panel edges. However, care must be taken to insure that
the two measurements are identical. In addition a least-square sub-
traction should be used in obtaining the reflected signal to compensate
for any gain and phase changes that may occur between measurements.

The disadvantages of the difference method are the additional time
required for separate measurements and an inherent phase error due to
digitizing the waveform. The time factor essentially doubles the time
required to perform the measurements while the phase error becomes a
problem only at high frequencies where the two-window method is accurate.
This results in an obvious choice of using the two-window method, except
at low frequencies (below 5 kHz) where the difference method is more
accurate.

EXPERIME.NTAL RESULTS

In Figs. (12), (13), and (14) the results of echo-reduction measure-
ments of steel and aluminum panels have been plotted against theoretical
curves. The measurements were performed on 0.95-cm-thick and 76.2-cm-
square panels in the anechoic tank at USRD. The noise level in the
anechoic tank during the measurements was approximately 40 dB below the
incident signal level.

In Fig. (12) the measurements of the steel panel were processe. by
the difference method. Measurements were made with and without the panel
in position, and 35 waveforms at each frequency were averaged. The no-
panel waveforms were directly subtracted from the waveforms; with the
panel in position to obtain the waveform of the reflected signal. Each
waveform was then processed with a 15-pole expansion that included the
two driving frequency poles a priori. The results deviate from the
theoretical curve by a few tenths of a dB.
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Fig. (12) -Results of Prony measurements of a 0.95-cm-
thick steel panel processed by the difference
method
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In Figs. (13) and (14) the results of measurements on an aluminum
panel have been plotted against theoretical curves. The aluminum
plate was chosen since it has a larger echo reduction than the steel
panel and was a better test of the method. The results in Fig. (13)
were obtained in the same manner as the data for the steel panel
except three a priori poles were used. The third a priori pole was
associated with an RC filter on the input side of the electronics.
The experimental results deviate from the theoretical curve by
approximately 0.25 dB.

In Fig. (14) the measurements were processed by the two-window
method. The probe was positioned 15 cm from the panel to provide
equal segments of the incident and reflected signals and 50 separate
measurements were averaged to obtain the waveforms. Each time window
was processed with a 15-pole expansion that included three a priori
poles. The results deviate fiom the theoretical curve by an average
of 0.35 dB. However, the 3-kHz measurement deviates by 1.05 dB, a
result explained by the previously described phase error associated
with the two-window method.

In addition to the data presented here, measurements on a 1.27-
cm-thick steel plate have been performed at 2 and 2.5 kI-z with the
difference method. These measurements deviated from the theoretical
values by approximately 0.5 dB and indicate that the method is capable
of performing accurate measurements down to 2 kHz.
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CONCLUSION

The experimental results indicate that the modified Prony method
is capable of making echo-reduction measurements down to 2 kHz on
simple homogeneous panels with an error no greater than 0.5 dB. There
have been no measurements, as yet, on high Q or lossy panels. However,
these panels should not present an obstacle as long as the required
number of terms in the expansion does not become too large.

ACKNOWLEDGMENTS

The author wishes to express his gratitude to the staff of the
USRD's Anechoic Tank Facility for their help in obtaining the data
for this report and to Dr. A. L. Van Buren of USRD's Methods Section
for his patient guidance. Special acknowledgment is due to USRD's
consultant Mr. A. Zed Robinson who is responsible for many ideas
contained in this report and for reduction of the data.

REFERENCES

1 - R. Prony, "Essai experimental et analytique sur les lois de la
dilatabiliterdes fluides elastiques et sur celles de la force
expansive de la vapeur de l'eau et de la vapeur de l'alkool, a'
differentes temperatures," J.Ec. Polytech. 1, 24-76 (1795)

2 - F. B. Hildebrand, Advanced Calculus for Applications, 2nd Ed.
(Prentice-Hall, New Jersey, 1963).

3 - M. L. Van Blaricum, "Techniques for extracting the complex
resonances of a system directly from its transient reponse,"
Ph.D. dissertation, Electrical Engineering Det., Univ. of
Illinois, Urbana, Dec. 1975.

4 - R. N. McDonough, "Representation and Analysis of Signals, Part XV.
Matched Exponents for the Representation of Signals," John Hopkins
U. Dep. Electr. Eng. Rep. (April 1963).

5 - L. G. Beatty, J. D. George and A. Zed Robinson, "Use of the complex
exponential expansion as a signal representation for underwater
acoustic calibration." J. Acoust. Soc. Am. 63(6), 1782-1794
(Jun 1978).

24



APPENDIX A

OVERVIEW

The following modified Prony program listing has been written in
FORTRAN 4+ and is compatible with the Digital Electronics Corporation
PDP 11/45 computer with the system RSX-IID. The program is designed
to use data files, with a maximum of 1024 data points, that have the
short IAG header format. Current dimension statements have limited
the program to a maximum order of expansion of 15 and a maximum of
5 a priori poles.
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APPENDIX B

LIST OF VARIABLES IN PRONY

J - number of data points in data file

ISP - initial start point in data file

NPTS - number of points in time window

IBD - data increment

NR - order of expansion

IA - number of a priori poles

DX - data file time increment

DEV - mean square deviation

ROOTS(I) - array of a priori poles (s plane)

ROOTZ(I) - array of z plane poles

DATA(I) - array of data points

COE(I) - coefficients of Prony polynomial

ACDEF(I) - array of amplitudes

COEFB(I) - coefficients of a priori polynomial

E(I,K) - matrix of Prony difference equations

F(I) - vector associated with Prony difference

equations

A(I,K) - matrix of equations for amplitudes

R(I) - vector associated with A(I,J)
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APPENDIX C

INPUT EXAMPLE

RUN- PRONY

ENTER FILE SFECS+
FRG .DHT i 1 .

ENTER INITIAL START -OIN ,

ENTER NUMBE,-E OF POINTS IN TIME WINDOWaO)

ENTER BASIC DATA INCREMENT.%'ODD INTEGER) 11

ENTER ORDER OF EXPANSION, .

DO YOU WISH TO ENTER AF'RIORI ROOTS? (Y/N) Y

ENTER * OF AFRIORI P L..,.'.m

ENTER POLE VALUES AS

RE AL, IMAGINARY

i 0 Q w 'j

Q-r, 0 (7 -48 Q .4 9'  55Y3 = "-.':)(I , ,- " /• I

I iN I S H E D

Note: 1), All underlined portions are user supplied

2), ) indicates 'RETURN'
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APPENDIX D

OUTPUT EXAMPLE

DATE= 03-KAR-80

TIMEz 10:30:05

INPUT DATA FILE INFORMATION

PRON.DHTI 1

FILE HEADER INFORMATION

0 1024 1 0.00000 0.10000E-05 C 2

3KHZ

INITIAL START POINT- 252

TullE WIPNDO-NT 0.20000E-03

BASIC DATA INCREENTs 11

ORDER OF EXPANSION= 15

APRIORI POLES

RE AL, INAC

I O.OOOOOE+O00 .18830E+05

2 0.O0000E+OO-O. 18a30E+05

Z-PLAitE POLES. RESIDUES.

I 0.99962E+03 0.18643E-O1 1 0.60233E-01 -0. 10084E+O0

2 0.99902E+00 -0.1084,BE-01 2 O.60255E-01 O.100."E+GO

3 0.993*3E+00 0.62862E-OI 3 -0.37641E-03 O.50109E-03

4 0.99093E+00 -0.62862E-01 4 -0.37840E-03 -0. 50 100E-03

5 O.10032E 01 O.10119E+O0 5 -0.37330E-03 0.42420E-03

6 O.I032E Ol -0.10119E+O0 6 -0.37830E-03 -0.42420E-03

7 O.97139E+00 O.14030E+O0 7 -0.31909E-02 -0.21556E-03

a 0.97139E+00 -0.141JJOE+O0 8 -0.31909E-02 0.21557E-03

9 0.9Cno5E+00 O.182,15E+00 9 -0.47842E-03 -0.6049BE-03

10 0.98065E+00 -0.118233E 00 10 -0.47042E-03 0.60498E-03

II 0.96659E+00 0.25500E+00 it 0.16859E-03 0.74164E-04

12 0.96639E+00 -0.25580E+00 12 0.16859E-03 -0.74165E-04

13 0.9 . 39+00 0.20406E+00 ila O. I56J2E-02 -0. 1331EL-02

14 0.13r.+01 -0.2011"6E+O0 14 0. 16,42E-02 0. 1331OL-02

rUAl SOUA.I DEVIVI'1012 0.3GICOE-06
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APPENDIX E

PRONY LISTING

C
C
c PRONY MAIN PROGRAMI
C

COMPLEX ROOTS(10),ROOTZ(15)PACOEF(15),E(15P15),F(15)
DIMENSION COEFB(16) ,A(l~vl5) ,R(15) ,tATA(1024) ,COE(16)
BYTE TIM(8),E'AT(9)

C
CALL DATE(DAT)
WRITE(2p500)DAT
CALL TIME(~TIM)
WRITE(2p5 10)TIM
CALL RFILES(DATApJvDX)

C
C OBTAIN INITIAL START POINT

I WRITE(6p520)
READ(5v 530)I1SP'
WRITE(2r535) 15F

C
C1 CHECK THAT ISP IS GREATER THAN ZERO
C

IF( ISP-i )5,10v10
5 WRITE(6p540)

GOTO 1

C OBTAIN NUMBER OF POINTS IN DATA wiNDOW
C
10 WRITE(6p550)

RE7AL' (5 r,560) NPTS
TW = rX ,NPT S

C CHECK THAT WINDOW DOES NOT EXCEED DATA RANGE
C

IF( ISP+NFTS-J-1 )20, 20,15
1 1.5 WR ITE (6 v570)

GOT'] .1
20) WfRJTE(2r580)TW

C OBTAIN BASIC DATAi INCREMENT

WflITE(6v590)
RCYA:(5 600) 1 Lil
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C
C CHECK THAT IBD IS AN ODDI INTEGER
C

IJ=IBD/2
IF(2*IJ-IBro35v30,30

30 WRITE(69610)
GOTO 25

C
c OBTAIN ORDER OF EXPANSION
C
35 WRITE(6,620)

READ(5p630)NR
WRITE(2p640)NR

C
C ARE THERE ANY AF'RIORI ROOTS?
C

WRITE(69650)
READ(5v660) IZ
IF( IZ-'Y' )40,50,40

C
C NO APRIORI ROOTS
C
40 1A=0

COEFB( 1)=1 .0
COEFB(2)=0.O
COEFB(3)=0.0

C
C CHECK THAT THERE ARE SUFFICIENT DATA POINTS
C

IF(NPTS-NR*(IBD+1) )45t7070
45 WRITE(6p670)

GO TO 10
C
C CALL P'RIORI FOR AF'RIORI ROOTS
C
~30 CALL FRIORI(ROOTSROOTZCQEFE',IADXIBD)

C
C CHECK THAT IA WAS NOT SET EQUAL TO ZERO IN PRIORI
C

IF(IA)55t40,55
C

C CHECK THAT THERE ARE SUFFICIENT DATA POINTS FOR THE
C CASE WITH APRIORI ROOTS.
C

55 ~IF(NP'TS-NR*(IDD+1)+-IA)60,65,65
60 WRITE(6,o70)

GOTo 10
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C
C CHECK FOR CASE WHERE NUMB~ER OF APRIORI ROOTS=
C ORDER OF EXPANSION
C

65 IF(NR-IA)66vll0,70
66 NR=IA

GOTO 110
70 CALL MA'TRIX(ARPNRIANF'TSCOEFP~iDATAPISFPIBDFIL)
C
(.1 CHECK RETURN FROM MATRIX
C

IF(IL-10)75, 10,75
C

C CHECK FOR THE CASE WHERE THERE IS ONLY ONE NON-AFRIORI
C ROOT
C
75 IF(NR-IA-1)65980P85
C
C OBTAIN SINGLE DESIRED ROOT
C
so ROOTZ(IA+1)=CMF'LX(-R(1)/A(1,1) ,0.0)

GOTO 110
85 CALL SOLVER(AYRYCOEPNRPIAPIB)
C
C CHECK EXIT FROM SOLVER
C

IF(IB)9599095
90 NR=NR-1

WRITE(2p680)NR
IF(NR--IA)65F110,70

95 CALL PRQD(COEyNRvIERRQOTZvIA)
C
C CHECK RETURN FROM PROD
C

IF( IER. 110,110, 105
105 NR=NR-1i

GO TO 70
110 IF(IBD-1)25,120,115
C
C CONVERT Z--PLANE ROOTS TO IBD=1

115 CALL ROOTC(ROOTZPIBDP'NR)
120 WRITE(29700)

Do 15i1,PNR
WRJ:.TE 2,1710)1, ROOTZ( I)

125 CONT I NIE
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C OBTAIN ACOEF
c
:130 CALL RESIDU(DATAEFPROOTZPNRPNF'TS, ISP')

CALL SOLVE(EYFPACOEFPNRPIB)
IF( II) 140w135p140

135 CALL ROOTE(ROOTZYNR)
GOTO 130

140 WRITE(2p720)
DO 150 I=lPNR
WRITE(2y7l0) IPACOEF(I)

150 CONTINUE
CALL MSDEV(ISPr,ATAi,EVNF'TSROOTZACOEFNR)
WRITE(2v730)DEV

170 WRITE(6p750)
C
C FORMAT STATEMENTS

5300 FORMAT(/p16XY' DATE= '99Al)

530 FORMAT(14)
535 FORMAT(/YlOXP' INITIAL START POINT= 't14)
540 FORMAT(/P' INITIAL START POINT MUST BE GREATER THAN ZERO.-)
550 FORMAT(/v'$ENTER NUMBER OF POINTS IN TIME WINDOW.')
560 FORMAT(I4)
570 FORMAT(/Y' DATA WINDOW EXCEEDS DATA FILE.')
580 FORMAT(/pl6XP' TIME WINDOWJ= 'FE12.5)
590 FORMAT(/P'$ENTrER BASIC DATA INCREMENT. (ODD INTEGER) '

600 FORMAT(I3)
610 FORMAT(/'' BASIC DATA INCREMENT MUST BE ODiD INTEGER,')
620 FORMAT(/P'$ENTER ORDER OF EXPANSION,')
630 FORMAT(I3)
640 FORMAT(/pl6XP' ORDER OF EXPAN'SION= '913)
650 FORMAT(/Y'$D'.O YOU WISH TO ENTER APRIORI ROOTS? (Y/N) ')

660 FORMAT(1Al)
670 FORMAr,-,' INSUFFICIENT NUMBER OFDATA POINTS.')
680 FORMAT(/,16XP' ORDER OF EXPANSION= 'P13)
700 FORMAT(/910XY,' Z-F'LANE FOLES. 'r/)
710 FORMAT(/,6XY I2,6XPE12'.5,5XE12.5)
7'20 FORMAT(/Pl0XP' RESIDUES.',!)
.7-0 F0RMAT(/,1lX7' MEAN SOUARE DEVIATION= ',PE12.5)
750 FORMAT(/,' FINISHED')

CALL EXIT
END
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C PRONY SUBROUTINE FOR ENTERING AF'RIORI POLES INTO VECTOR
C OF S-PLANE POLES.
C PROGRAM ALSO CONVERTS S-PLANE POLES TO Z-PLANE POLES
C AND COMPUTES B COEFFICIENTS FOR PRONY DIFFERENCE EQUATIONS.
C DIMENSIONING HAS LIMITED SUBROUTINE TO 5 POLES.
C

SUBROUTINE FRIORI(ROOTSROOTZCOEFBIADXIBD)
C
C ROOTS=VECTOR OF S-PLANE FOLES
C ROOTZ=VECTOR OF Z-PLANE FOLES
C COEFB=VECTOR OF B COEFFICIENTS ORDERED FROM LOW TO HIGH
C IA=NUMBER OF APRIORI ROOTS
C DX=DATA FILE TIME INCREMENT
C IBD=BASIC DATA INCREMENT
C

COMPLEX ROOTS(5),ROOTZ(15),B(6),C1
DIMENSION COEFB(6)

C
(3 ENTER NUMBER OF ROOTS
C

WRITE(6,100)
READ(5,110)IA
IF(IA)90,90,5

C
C ENTER ROOTS AS COMF'LEX NUMBERS
C
t5 WRITE(6,120)

WRITE(6,130)
DO 10 I=1,IA
WRITE(6,140)I
READ(5,150)ROOTS(I)

10 CONTINUE
WRITE(2,160)
WRITE(2,170)
DO 15 IX=lIA
WRITE(2,180)IXROOTS(IX)

15 CONTINUE

' CONVERT TO Z-PLANE
C

C=IprD Dx

CI=CMPLX(C,O.O)
rOO 20 IX=IIA
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ROOTZ( IX)=CEXP(ROOTS( IX)*C1)
20 CONTINUE
25 CONTINUE
(1
c COMPUTE B' COEFFICIENTSYSET ALL TERMS IN B(I)= 1
C

DO 30 1=1,6
B(I)=CMF'LX(1 .0,0.0)

30 CONTINUE
c
C CHECK VALUE OF IA AND SET INITIAL VALUES
C

IF(IA-l)90P40945
40 COEFB(1)=REAL(ROOTZ(1))

COEFB(2)=1 .0
GO TO 90

45 E(1)=ROOTZU1)*ROOTZ(2)
B( 2) =-( ROOTZ( 1) +ROOTZ (2))
IF( IA-2)90, 65v50

C
C ENTER LOOP FOR CALCULATING COEFFICIENTS
C
50 DO 60 K=3PIA

DO 55 J=KP2?-l
55 E(J)=B(J-1)-ROOTZ(K)*4(J)

B( 1 )-B(i )*ROOTZ(K)
60 CONTINUE
65 DO 70 I=1,IA+1

COEFB( I )REAL(B(I))
70 CONTINUE
90 RETURN
c
(C FORMAT STATEMENTS
c-

.100 FORMAT(/#'$ENTER * OF APRIORI POLES?')
110 FORMAT(I2)
120 FORMAT(/?' ENTER POLE VALUES AS',!)
130 FORMAT(/y16Xr' REAL, IMAGINARY'*P/)
140 FORMAT(/r'$'I2p3X)
150 FORMAT(2EI2.5)
160 FfRMAT(/p27XP' AFRIORI POLES-'Y/)
170 FORMAT*(7XP' *'?15XP' REALF'6XP' IMAG'Y!)
180 FORMAT(/p7XpI2, 13Xq2E12.5)

END
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1 PRONY SUBROUTINE FOR GENERATING THE PRONY DIFFERENCE
Cl EQUATIONS IN THE FORM A*(COE)=R, WHEN APRIORI POLES
C (ROOTZ) ARE GIVEN.'A' IS GENERATED BY A VIRTUAL MATRIX
C PREMULTIPLIED BY IT'S TRANSPOSE.
C

SUBROUTINE MATRIX(ARNRIANPTSCOEFBDATAISF',IBDIL)
C
C A=MATRIX CONTAINING DIFFERENCE EQUATIONS
C R=COLUMN VECTOR WHICH ARISES DUE TO THE CONSTRAINT
C THAT THE HIGHEST BETA COEFFICIENT EQUAL ONE
C NR=NUMBER OF POLES IN PRONY EXPANSION
C IA=NUMBER OF APRIORI POLES
C NPTS=NUMBER OF POINTS IN DATA
C COEFB=COEFFICIENTS FROM APRIORI POLES
C DATA=DATA FILE
C ISP=INITIAL START POINT IN DATA
C IBD=BASIC DATA INCREMENT
C; IL=RETURN CODE
C

DIMENSION A(15,i5),R(15),COEFB(6),DATA(1024)
C
C DEFINE VARIABLE RANGE
C

IC=NR-IA
IR=NPTS-NR*IBD
IS=ISP-1

C

C CHECK FOR EXACTLY SOLVED CASE
C

IN=IR-IC
IF(IN)10,20,50

I0 IL:=I0
WRITE(6,500)
RETURN

C
C EXACTLY SOLVED CASE
C
20 [1O 30 I=iIC

DO 30 J=IIC
A(IJ)=0.0

DO 30 IKK=I,IA+I.
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A(IJ)=COEFB(IK)*DATA( I+IS+(IK-1 )*IBE'+(J-1 )*IE'D)+A( IJ)
30 CONTINUE

rDO 40 1IlIC
R(I)=0.0
['0 40 IK=1,IA+1
R(I)=R(I)-COEFB(IK)*E'ATA(I+IS+(IK-1)*iBi+ic*iBr')

40 CONTINUE
GO TO S0

(, LEAST SQUARE TYPE SOLUTION
C

DO 70 J=IPIC
A(IFJP=O.0
R( I)=0. 0
DO 70 K~lYIR
B1=0.0
B2=0.0
R1=0 .0
DO 60 IK=1,IA+.
Bl=COEFE(IIO*DATA(K+IS+(I-1*I~r+(J-1*IE'+E1
B2.'COEFEB(IK)*D'ATA(K+IS+(IK-1)*IBDl+(I-1)*tBDf)+B2
Rl=COEFB(IK)*ATA(IK+IS+UIK-1)*IBD+IC*IBD)+RI

60 CONTINUE

R( I )R( I)-R1*B2
70 CONTINUE
80 IF(IC-1 )110pl1:0990
90 DO 100 I=26IC

DO 100 J=1,I-1
A~( I PJ )=A (J, I

100 CONTINUE
:.1. 0 Il-=36

RET U RN
'500 FORMAT(/Y' INSUFFICIENT NUMBEER OF DATA FOINTSPIN (MATRIX)."

ENEi
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C
C

C PRONY SUBROUTINE FOR SOLVING THE LEAST SQUARE EQUATIONS
C GENERATED IN MATRIX TO FIND THE COEFFICIENTS OF THE
C PRONY POLYNOMIAL
C

SUBROUTINE SOLVER(AR,COENRIAIB)
C
C

DIMENSION A(15,15),R(15),COE(16),X(15),IKTA(15)
C

IB=1
N=NR-IA
DO 10 I=lN
IKTA(I)=I

10 CONTINUE
K=1

C CHECK LEADING TERM
C
1L5 IF(A(K,K))30,20,30
20 CALL INTERD(AR,IKTA,K,N,ICi)

IF(IC1)30,25,30
25 IB=O

RETURN
30 CONTINUE
C
C DIVIDE ROWS BY LEADING TERM
C

Cl=A(KK)
R(K)=R(K)/C1
DO 40 J=K,N
A(KVJ)=A(KJ)/Cl

40 CONTINUE
C
C; SUBTRACT K ROW FROM ALL ROWS BELOW
C

DO 50 I=K+1,N

R(I)=R(I)-R(K)*A(IK)
CI=A(I,K)
1:O 50 J=K,N
A(IJ)=A(IJ)-A(KJ)*Cl

50 CONTINUE
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K=K+ I

60 X(N)=R(N)/A(NPN)
DIO 70 I=N-lplt-.
X(I)=R(I)
rO 70 J=NYI+lp-l
X( I)=X( I)-X(J)*A( I J)

70 CONTINUE
DiO 80 I=IYN
J=IKTA(I)
CQE(J)=X( I)

130 CONTINUE
COE(N+1 )=1.0
RETURN
END
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C

C SUBROUTINE INTERCHANGES ROWS AND COLUMNS OF MATRIX A AND
C VECTOR R WHILE KEEPING TRACK OF CHANGES IN VECTOR IKTA.
C

SUBROUTINE INTERDCAPRPIKTAYKNYICl)
C
C

DIMENSION A(15,1S) ,R(15) ,XlT(15) 'X2T(15)PIKTA(16)
C

IC 1=04
IRI=K
X1=0.0
rio 10 I=KYN
IF(ABS(Xl)-ABS(A(K, I) ))5, 10,10

5 IC11I
X1=A(K, I)

10 CONTINUE
IF (IC ) 15p15,20

15 RETURN
20 I=Il

DO 30 J1,PN
XlT(J)=A(IPJ)

30 CONTINUE

I=IC1
DlO 40 J=19N
X2-T(J)=A( IPJ)

40 CONTINUE
I=IRI
Do so J=19N
A (IJ )=X!2T (J)

50 CONTINUE
I=ICI
110 60 J=1 N
A (I ,J) =Xl TkJ)

60 CONTINUE
C

u INTERC&HANGE COLUMNS
c

DO 70 11,PN
XIT( I)=A( ItJ)

43



70 CONTINUE
J= IC 1
DiO 80 I=lPN
X2T(I)=A(IJ)

80 CONTINUE
J= IR 1
DiO 90 I=lvN
A(IPJ)=X2T(I)

90 CONTINUE
J=IC1
rDO 110 I=lpN
A(IJ)=XlT(l)

110 CONTINUE
RIT=R( IRi)
R2r=RC ICl)
R(IR )=R2T4
RCIC1 )=RlT
I=IKTA( IRI)
J=I(TA(ICl)
IKTA(IR1)=j
IKTA( IC1)=I
RETURN
ENDI
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(1 FRONY SUBROUTINE FOR CONVERTING THE ROOTZ FOUND WITH
C THE BASIC DATA INCREMENT NOT EQUAL TO ONE (ROOTZ)**IBD
C TO THE ROOTZ WITH BASIC DATA INCREMENT OF ONE.
C

SUBROUTINE ROOTC(ROOTZ, IBriyNR)
C
(1 ROOTZ=CONTAINS THE ROOTZ**IBD ON RETURN CONTAINS ROOTZ
C IBD=BASIC DIATA INCREMENT
C

COMPLEX ROOTZ( 15)
C

DO 20 I=1,NR
A=AIMAG(ROOTZ(I))
B=REAL (ROOTZ( I))
J= .OE+3*A
K=ININT( 1 .E3*B)
I F (J) 10, 5p 10

5 IF(K)6P8910
6 B=ABS(REAL(ROOTZ(I)))

B=B**(l/FLOAT(IBD))
ROOTZ(I)=CMPLX(-BP0.O)

8 GOTO 20
10 ROOTZ(I)=CEXP((CLOG(ROOTZ(I)))/IBDI)
20 CONTINUE

RETURN
ENE,

C
C PRONY SUBROUTINE FOR DELETING ROOTS WHEN RESIDU FAILS
C

SUBROUTINE ROOTE(ROOTZFNR)
COMPLEX ROOTZ( 15)

(2

WRITE(6 1.00)
DO 10 I=1.,NR
WRITE(6, 110)1 ROOTZ( I)

1.0 CONTINUE

READi(5 130) IX

45



[DO 20 I=IXrNR-1
ROOTZ(I)=RDOTZ(I+l)

20 CONTINUE
ROOTZ(NR)=CMPLX(0.0O 0.0)
NR=NR-1
WRITE(6YI40)
REAL'(5p150)IJ
IFCIJ-'Y' )30, 1~v30

30 RETURN
(.
C FORMAT STATEMENTS
C
100 FORMAT(/v'lZ-PLANE POLES')
110 FORMAT(3Xt I2p3XpE12,5r4XvE12.5)
120 FORMAT(/P'$WHICH POLE IS TO B'E DELETED?')
130 FORMAT(I12)
140 FORMAT(/Y'$DELETE ANOTHER?')
150 FORMAT(lAl)

END
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C
C PRONY SUBROUTINE WHICH LOADS THE MATRIX E AND VECTOR F
C WITH THE LEAST SQUARE EQUATIONS FOR CALCULATING THE
C RESIDUES ASSOCIATED' WITH THE POLES.
C

SUBROUTINE RESItU(DiATAEFROOTZNRYNFPTSPISF)
C

COMPLEX ROOTZ(15) tApBvE(l1v5~1) F(l5)
DIMENSION DATA(1024)

C

A=CMPLX( 1.0,0.0)
DO 10 11,PNR
DO 10 J=IYNR
E=(CONJG(ROOTZ(I) ))*ROOTZ(J)
IF(AIMAG(B) )5,1,5

:1 IF(REAL(B)-1 .0)5f2y5
2 ECIqJ)=CMPLX(FLOAT(NPTS) ,0,0)

6O TO 10

10 CONTINUE
C
C

DO 20 K=IYNR
F(K)=CMFPLX(DiATA( ISF') O.O)
DO 20 I=lp(NF'TS-1)
F(K)=DIATA(ISF'+I)*(CONJG(ROOTZ(K))**I)+F(K)

-20 CONTINUE
DO 30 I=2rNR
DO 30 J=lpI-1l

30 CONTINUE
RETURN
E ND
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C
C PRONY SUBROUTINE WHICH SOLVES THE LEAST SQUARE
C EQUATIONS GENERATED IN RESIDU TO FIND THE RESIDUES.
C SUBROUTINE SOLVES SIMULTANEOUS EQUATIONS WITH
C COMPLEX COEFFICIENTS.
C

SUBROUTINE SOLVE(EFrACOEFNRIB)
C
C

COMPLEX E(l1p5,1) F(15) 'ACOEF(15) ,X(15) ,CIC2
DIMENSION IKT(15)

C
C

I B= 1

C FILL ARRAY TO KEEP TRACK OF ROW AND COLUMN
C INTERCHANGES
C

DO 10 I=1,NR
IKT(I)=I

1.0 CONTINUE
K= 1

C CHECK LEADING TERM
C

:15 C3=REAL(E(KPK))
IF(C3)34720,34

C
(11 INTERCHANGE ROWS AND' COLUMNS

C
20 CALL INTERC(EFIKTKNRIC.)

IF(IC1 )34p30,34
30 114=0

RETURN
(C

C DIVIDE ROWS BY LEADING TERM
C
34 N=K
35 C2=E(NN

F(N)=F(N)/C2
0O 40 J=KPNR
E(IJ.J)=E(NyJ)/C2-

40 CONJTINUE

48

MEMO



IF(NR-N)5Oy50,45
45 N=N+l

GO TO 35
.C
c SUBTRACT K ROW FROM ALL ROWS B'ELOW
c
50 DO 60 I=K+lPNR

F( I)=F( I)-F(K)*E( I K)
C2=E(ItK)
DlO 60 J=KPNR

60 CONTINUE
K=K+l
IF(K-NR) 15v70r70

70 X(NR)=F(NR)/E(NRPNR)
DO 80 I=NR-1,1,-1
X(I)=F(I)
DO 80 J=NRYI+lp-1
X( I)=X( I)-X(J)*E( I J)

s0 CONTINUE
DO 90 I=lPNR
J=IKT(I)
ACOEF(J)=X( I)

90 CONTINUE
RETURN
END
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C
C SUBROUTINE INTERCHANGES ROWS AND COLUMNS OF MATRIX E
C AND VECTOR F WHILE KEEPING.TRACK OF CHANGES IN VECTOR
C IKT.
C

SUBROUTINE INTERC(EPFPIKTPKYNRP ICi)
C
C,

COMPLEX E(15,15) YF(15) ,X1T(15) ,X2T(15) ,R1TR2T
DIMENSION IKT(15)

C
C

Icl=0
IRI=K
X1=0,0
DO 10 I=KrNR
X2=REAL(E(K, I))
IF(AE4S(Xl)-ABS(X2) )5 10,10

5 IC1=I
Xl=X2

10 CONTINUE

1L5 RETURN
20) I=IRI

DO 30 J=1PNR
X1T(J)=E( IYJ)

30 CONTINUE
I=ICI.
DO 40 J=19NR
X2T(J)=E(IPJ)

40 CONTINUE
I=IRl
D'O 50 J=19NR
E(IPJ)=X2T(J)

50 CONTINUE
I=ICI
DO 60 J=1,N:
E(IPJ)=X1T(J)

60 CONTINUE

C INTERCHANGE COLUMNS
C

so



J= IR 1
DO 70 I=lPNR
Xlr(i)=E(IPJ)

70 CONTINUE
J=Ic1
Do 80 I=lPNR
X2T(I)=E(IPJ)

so CONTINUE
J= IR1
Do g0 I=1,NR
E( IJ)=X2T( I)

90 CONTINUE
F J=Ic1

DO 110 I=lPNR
E( Ij)=X1T( I)

110 CONTINUE
RlT=F(IRl)
R2T=F(IC1)
F(IR1 )=R2T
F(ICI)=RlT
I=IKTCIRl)
J=IKT(IC1)
IKT( 1R1 )J
IKT(IC1 )=I
RETURN
END
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C
C PRONY SUBROUTINE FOR CALCULATING MEAN SQUARE DEVIATION
C BETWEEN PRONY RECONSTRUCTED FILE AND ACTUAL DATA FILE.
C

SUBROUTINE MSEIEV( ISF,DATAtiEViNFTSPROOTZtACOEFNR)
DIMENSION rATA(1024)
COMPLEX ROOTZ(15)PACOEF(15)PB

C

DEV=0.O
DO 20 IX=ISF'YNPTS+ISF'-l
IT =IX -IS P
B=CMPL-X(0OO.0)
DiO 10 It(=l1NR
B=ACOEF( IK)*(ROOTZ(IK)**IT)+I

10 CONTINUE
DEV=(REAL(E')-DATA(IX) )**2+tiEV

20 CONTINUE
DE V=DE / NP TS
RE TURN
ENDL
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C PRONY SUBROUTINE FOR READING INPUT DATA FILES IN
C SINGLE PRECISION USING IAG HEADER FORMAT
C

SUBROUTINE RFILES(E'ATAvJrflX)
C
C J=NUMBER OF DATA POINTS IN FILE
C DX=TIME INCREMENT
C

DIMENSION DATA(1024)PICH(1)PIHII(74)
BYTE NAME(34)PITXT(148)PCHAR(2)

C QIAEC(HRIYCHl)(H~~IX~)
C

WRITE(6, 100)
READ(5, 110)NAYNAME
NAME(NA+1 )=0

* WRITE(29120)
WRITE(2v130)(NAME(IX)vIX=lyNA)
OFPEN(UNIT=4,NAME=NAMETYF'E='OLDI' FORM='UNFORMATTED' ,READON4LY

* IKC=l
READ(4pEND=1801 ERR=190 I ,JKPSX1DIXPICH
IKC=IKC+l
WRITE(2, 140)
WRITE(2,150)IJPKSXDXCHAR(1)YCHAR(2)
NUM=CHAR(2)
IF(NUM- ) 15p15p5

5 DO 10 IX1,PNUM+l
REArD(49END=18O-tERR=190) IHrD(IX)

10 CONTINUE
WRII'E(2,160)(ITXT(IX),IX=1,2*NUM)

15 lKC=Jt{C+I
EIO 20 IX=1?J
READ(4,END=l80tERR=190)DATA(IX)

20 CONTINUE
CALL CLOSE(4)
RETURN

:LOOFORMAT(/r, ENTER FILE SPECS+')
110 FORMAT(Q?34Al)
1'2OFORMAT(/t16X?' INPUT DATA FILE INFORMATION',!)
130 FORMAT (16X,''.*N:.)
14OFORMAT(/t16XP' FILE HEADER INFORMATION',!)
150oFOFMAT(/,1ZX9316,F12.5;*E1.5,4X,1A1v4XY 14p/)
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160 FORMAT(16XP' '.(2*NUM.'.Al)
180 WRITE(69200)IKC

0O TO 220
190 WRITE(6v210)IKC
200 FORMAT(' END OF FILE ON REAr'-PROG. EXIT Il3v/)
210 FORJIAT(' ERR ON REAEI-FROG. EXIT PI3,/)
220 CALL EXIT

ENDE
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SUBROUTINE PRQD(COErNRPIERf'ROOTZIA) (see note at end of
C this appendix)
C DIMENSIONED DUMMY VARIABLES

DIMENSION E (1.6) ,(16) COE (16), POL(16)
COMPLEX ROOTZ(15)

C
C NORMALIZATION OF GIVEN POLYNOMIAL
C TEST OF DIMENSION
C IR CONTAINS INDEX OF HIGHEST COEFFICIENT

IER=0
IC = R -I A +
IR=IC
E PS= 1. E-6
TDL=1 .E--3
LIMIT =10' IC
KO0U NT= 0

1 IF(IR-1)79779 ,2
C
C DIROP TRAILING ZERO COEFFICIENTS

2 IF(COE(IR) )4,3P4
3 I,';=I R- I

GOTO 1
C
C REAIRRANGEMENT OF GIVEN POLYNOMIAL
C EXTRACTION OF ZERO ROOTS

4I~ 0=./COEC(IR)

IND=IR-l
JPEGA= 1

N 4 A V E I T C ..
0. rC E I -!. '

VI-E 1- j-,, r.-E jF O .70F TH E LO0WEI*-ST 1ONZERo COFI-ThT
DO 9 I=lIR

IF(COE(l) )7PSY7
5 G0T0(618)iJ8EG~
6 NSAV=NSAV+l

Q( £STA)=0,
E(ISTA)=0P
ISTAzISTA+l
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GOTO
7 JCEG~2

9 CONTINUE

C INITIALIZATION
ES A V=0
0 ( I STA) =0

10 NSAV=IF:
1"c

C COMPUTATION OF DERIVAIlVE
E XPT =1 F-I ST A
E( S T A)EAXPT
DO 11 I=ISTAPIEND
EXF r=E.'PT-1L .0
FOL(I+1)=EPAB((I--))+EFE

TEST OF F.EiIAINING rDIME'S1 OIN
IF( ISTA-IENI) 2Yv20,60

12 JEND=IEND-1

C COMPUTATION OF S-FRACTION
'riO 19 I=ISTAYJENi

c THE GIVEN POLYNOMIIAL HAS -MULTIPLE ROOTS!, THE COEFFICIEN

THE COMMON FCOI ARE STRDFROM (N1SAV) UP TO Q IF:,)

rO 15~ K-IJN

,',E *- U C L I' A 0~:oF IR'T H 1

10 19 I 1 ~U

t7 IFCABS(Q(I+1 ))-POL(I+L) )80,80u19
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19 CONTINUE
20 QI)-(F

C THE DISPLACEMENT EXFT IS SET TO 0 AUTOMATICAL.I..Y.
C E( ISTA)=0. ,Q(I'STA+1) . . . E(NSAV-1 ) ,(NSAV) ,E(NSA''.V)=O

C FOR:M A DIAGONAL OF THE QD-ARRAY(.
C INITIALIZATION OF B4OUNDARY VALUES

21 E(IScTA)0O.
NRAN=NSAV-:1

2)2 E(NRAN+i)=0.
C
c TEcT FOrR LINEAR OR CONSTANT FACTOR
C NRAN-ISTA IS DEGREE-i

I F NRAN -13TA) 24 23Y~31
C

L I NEAR F A CTOR
23 Q 1 STA I =0 I STA+ I) + EF'r

E (I ETA + 1 )=0.

TEST FOR UNFACTORED 'COMIMON DIVISOR
24 E(ISTW)=ESAV

IFf(I R- N SAV)6~0Y60 25

C IN'ITIALIZE C~-iC:r~lFOR COMMON DIVISOR
25 ISTA=N0AY

ES A V =E (I TA)
GOT'J 10

0 00CONFUTATION OF )'[GT PAIR
P-c~ PF-'+ EXVT

-'r:ST F (3R E e Ll r'l
IF 0 27 -12 , 2 ---:3

27 U!NR~N OMI-1E1, ROOT FI

2E P R~ N) p

GiC.TO 7:

C REAL ROOT PALl?
29 Q(WlRAN~)=P-T

Q(NRAN+1 -P4T
E(N*RAW) =0.



REDUCTION OF DEGREE BY 2 (DEFLATION)
.. NRAN=NRAN-2.

COTO 22
c
C COMPUTATION OF REAL ROOT

30 CO(NRAN+ )=EXFT+P

c REDUCTION OF DEGREE BY I (DEFLATION)
N RAN =NR A N-1
COTO2)

CSTART 011-ITE'R'ATION
31 JEBEG=ISTA+l

JEND =t MRAN- -1.

TDELT'=.E-2-

3 2 KOUNT=KOUNT+ l1.
P=Q (N RAN +1)

3 37 =Bc(E (JEND))
c

IS THE"RE A REAL ROOT NEXT
IF(S".-R)'3238r334

C IS DISF'LACEMEN4T SMALL ENOUGH
374 1 F( R-rTD EL T) 36 y3 5 r3
35 =0

DO0 3'7 J -. J BEG -N RA H

T EST F OI S "LL fJ
T F ACDS~J I -O - ~ 11J 261

3-7 E(J e J +I E ( J,/0.J
J: 0 RC'FA N 1 0G

C U t~~ 7C El'tjgf IONI F I F: 0 Li E, LZ 0 0''!
C XS2-(QcNR".J+(wAN+)E(NRAN) )*X+Q(NRAN)*Q(NRANf1)

39 P=0,5(Q(NQAW +E(NRAN)+QNlA+),
0-PZP-Q(NAJ *Q(NRAN4'1)
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T=SCURT(ABS(O))

c TES-1 FOR CONVERGENCE
IF(S-TEFP'S )26*26v39

c ARE THERE COMPLEX^ ROOTS
39 IF(O)423,40v40
40 IF;P)42 741941
41 T=-T
42 P=F+T

R = C:
G0110 3,1

C MC.1FICATION FOR' COMPLEX ROOTS
c IS DI:SPLACEMENT SMALL ENOUGH

43- IF S-TDELT) 44.-35 y3,i

c ITIALIZATION

44 O=Q(JBEG)+E(1BEG)-F'

C TEST FOR SMALL DIVISOR

45 T=(T/O):**2
U=E ( jBEG)3,XQ. JP EG +1 1 T

KOUN T 1 0 UN T + 2

C TI-RFEEFOLD LOOP FOR COMPLEX DISPLp~fCEMENT
DO 53 J=JBE(3GrNRAN

TEST FOR SIMALLDVIR
IFk*A* iS(V)-POL(J))46r46,49

46 T-(J - H RAN "18 1 4 v G1
E7 EX 'T - C x PT +!

1:7O ( -2 ,J 14, Tf L 49

49 TP(A3O()-POL(Jfl))46)46s50

T=T*(VIO)XK*2

U~o,
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IF j-NRAN)5l51,2y52
51 U=G(J+2)*E(j+1 )/(O*( 1 +T))
5 2 V=iO +L--W

c TEST FOR SMALL DIVISOR

53 E (J) =W*V* (1.+T )/Q(J)
OCNRAN+l =V-E(NRH^N)

54 EXF'T=E-XPT+F*
TEPS=TEPS*l1
TDELT=TlDELT*1 * 1

(11 NO CONVERGENCE WITH FEASIBLE TOLERANCE
C ERROR RETURN IN CASE OF' UNSATISFACTORY CONVERGENCE

5 ;1E R= 1

C REARRANGE CALCULATED ROOTS
56 IErQ=NSAV-NRAN-1

E( ISTA) =ESA'V
I F (I END ) 59 59 y5-7

57 DO 52 I=1PIEND

J =: N RA TF + I

E (J ) =E E

59 1 R I STA+I END

0 NORMAL REI*URN
60 I::e'll I.

I F Ik)'71-) 78 y6 1

REnRRANGE CALCULA~TED ROC0r,;
r1 0C 62 I~lIR

.62 E,'I)-- (I+1)

C CALUt. 1rE:COEFFICIENT V~ECTO' !-ROM~O
POL C IR+1 )j,
TEND=IR-l
JBE&~i.
DO 69 J1,IR
ISTA=IR+1-J

10=0
P=Qt ISTA)
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C- - - - - - -

C MULTIPLY WITH LINEAR FACTOR
63 DO 64 I=1STArif'

64 O=PDL(1+1>
GOTO 69

65 G0TO(66y67)vJBEG
66 JBEG=2

POL(ISTA)=O.
GOTO 69

C
C MULTIPFLY WITH alUADp:ATIC FACTOR

67 JBEG=i

DO 68 I=ISTA IENt'
F'OL( I)=O-P*F'OL( 1+1)+U*POL (1+2")

68 O=FPOL(I+1)
F'OL IR ) ---P

69 CONTINUE
IF( IER)78i70v78

CCOMPARISON OF COEFFICIENT VECTORS7 XE. TEST OF ACCURACY
70 F-0.

IF(COE(I) )72,v71r'72
7 1 0=ABeS(POL(I))

(30T0 73
72 O=ABS ( (POL.( I )-COE(f ()/CO-E I)
73 IF(P-0)74,75y75
74 P=O
I'S CONTINUE

IrF(P--TOL..77-76? 76
76 IER=-l
7/ 0 i R, + 1)P

1 P 4. 0

I A+ yR

C ERROR RETUfNS
C ERROR RETUR~N FOR~ POLYNOMIJALS OF DEGREE LESS TH4N 1

79 1 E R- 2

RET(JRN
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C ERROR RETURN IF THERE EXISTS NO S-FRACTION
80 IER=4

IR=ISTA
GOTO 60

C
C ERROR RETURN IN CASE OF INSTABLE QD-ALGORITHM

81 IER=3
GOTO 56
END

Re info on vase 55:
Taken from page 183
IBM Application Program
System/360 Scientific Subroutine Package
Version III
Programer' s Manual
Program Number 360A-CM-03X
Fifth Ed (1970)
IBM Corp., Technical Publications Dept.
White Plains, NY 10601
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